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Abstract. We investigate the logical strength of Lipschitz determinacy,
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of the Borel hierarchy in the Baire space. As a result, we obtain charac-
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1 Introduction

Reverse mathematics is a well-established research program in Mathematical
Logic motivated by the fundamental question: Which set existence axioms are
needed to prove the known theorems of mathematics? As a contribution to this
program, we study in the context of second order arithmetic the logical strength
of the Lipschitz determinacy principle DetL and the Semi-Linear Ordering prin-
ciple SLOL restricted to the first levels of the Borel hierarchy in the Baire space.
In our main result we characterize ATR0 (one of the “Big Five” theories widely
studied in second order arithmetic) by using these determinacy principles.

Lipschitz games were first introduced in the setting of descriptive set theory
by W.W. Wadge [12] as a tool for studying the relative complexity of subsets of
the Baire space ωω. Given A,B ⊆ ωω, A is said to be Lipschitz reducible to B,
in symbols A ≤L B, if there is a Lipschitz function F such that x ∈ A if, and
only if, F (x) ∈ B (note that ≤L is a natural analog of the many-one reducibility
of computability theory). Wadge proved that ≤L can be studied in terms of
Lipschitz games. The Lipschitz game GL(A,B) is the game on ω where players I
and II alternatively play natural numbers ai and bi, and player II wins just in case
〈a0, a1, a2, . . . 〉 ∈ A ⇔ 〈b0, b1, b2, . . . 〉 ∈ B. By the so-called Wadge’s lemma, a
winning strategy for player II in GL(A,B) yields a Lipschitz function witnessing
A ≤L B, whereas a winning strategy for player I yields a Lipschitz function
witnessing ωωrB ≤L A. Wadge then assumed determinacy for Lipschitz games
as a working hypothesis and he extensively studied the structure of the Lipschitz
degrees (i.e. the equivalence classes generated by ≤L) in the Baire space. In
? A. Cordón-Franco and F.F. Lara-Martín were partially supported by grant PID2020-
116773GB-I00, Ministerio de Ciencia e Innovación (Spanish Government)
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particular, assuming determinacy, he derived the following somewhat surprising
comparability property, known as the Semi-Linear Ordering principle:

SLOL = “For all A,B ⊆ ωω, either A ≤L B or ωω rB ≤L A.”
In other words, ≤L is a linear order provided we identify the degree of a set with
that of its complement.

Lipschitz determinacy and SLOL can be naturally formalized in the language
of second order arithmetic (see Section 2). To fix notation, given formula classes
Γ1 and Γ2, let (Γ1, Γ2)-DetL denote the principle of determinacy for Lipschitz
games in the Baire space where player I’s pay-off set is Γ1-definable and player
II’s pay-off set is Γ2-definable (if Γ1= Γ2, we will simply write Γ1-DetL). Likewise,
let (Γ1, Γ2)-SLOL denote the corresponding semi-linear ordering principle.

Two remarkable results on the logical strength of Lipschitz determinacy are
to be mentioned. Firstly, A. Louveau and J. Saint Raymond [7] showed that Borel
Lipschitz determinacy is provable within second order arithmetic Z2. Secondly,
and very recently, A. Day et al. [2] have shown that the subsystem ATR0 +Π1

1 -
induction already proves Borel Lipschitz determinacy. These results evidence
that, in the context of second order arithmetic Borel Lipschitz determinacy is a
much weaker principle than Borel general determinacy, as ∆0

4-determinacy for
general infinite games is already not provable in Z2 (see [8]). In the present paper
we show that, however, this huge difference in strength does not occur at the
initial levels of the Borel hierarchy. Namely,

Theorem 1.

1. Over ACA0, ∆0
1-DetL, ∆0

1-SLOL and ATR0 are pairwise equivalent.
2. Over RCA0, (∆0

1, Π
0
1 )-DetL, Π0

1 -DetL, (∆0
1, Σ

0
1 ∧ Π0

1 )-SLOL and ATR0 are
pairwise equivalent.

By a theorem of J. R. Steel [11], ATR0 is equivalent to clopen and closed deter-
minacy for general infinite games. Hence, for clopen and closed sets Lipschitz
and general determinacy are equivalent principles.

Our proof methods have a certain topological flavor. The analysis of the
complete sets with respect to the reducibility relation ≤L developed in [12] can
be adapted to prove determinacy of Lipschitz games: roughly speaking, the player
who plays in a pay-off set with a richer topological structure will win the game.

The paper is divided into five sections. Section 1 is introductory and Section
2 contains some preliminaries. In Section 3 we study Lipschitz determinacy and
SLOL for clopen sets and obtain a reversal for ATR0 over the base theory ACA0.
In Section 4 we study Lipschitz determinacy and SLOL for closed sets and obtain
a reversal for ATR0 over RCA0. Section 5 contains some concluding remarks.

2 Preliminaries

We assume familiarity with subsystems of second order arithmetic RCA0, ACA0

and ATR0, as presented in [10]. Our notation and terminology are standard and
follow [10] (for details and full technical background the reader should consult



Lipschitz determinacy and Arithmetic Transfinite Recursion 3

that book). A formalization of general two-person infinite games within second
order arithmetic is described in section V.8 of [10] as well as in section 3 of [9].
(As usual, Γ -Det will denote the principle of general determinacy restricted to Γ
games in the Baire space.) A formalization of Lipschitz determinacy and SLOL
in second order arithmetic can be found in [6] or in section 2 of [1]. Here we
restrict ourselves to presenting some basic notions and terminology that will be
used extensively in this paper.

Within RCA0, we define N to be the unique set X such that ∀i (i ∈ X) and
we define a numerical pairing function by letting (i, j) = (i + j)2 + i. Using
∆0

1 comprehension, we can prove that for all sets X,Y ⊆ N, there exists a set
X × Y ⊆ N consisting of all (i, j) such that i ∈ X and j ∈ Y . A function
f : X → Y is defined to be a set f ⊆ X × Y such that for all i ∈ X there is
exactly one j ∈ Y such that (i, j) ∈ f (we will also write f ∈ Y X). For i ∈ X, f(i)
is defined to be the unique j such that (i, j) ∈ f . Finite sequences of natural
numbers can be encoded as a single natural number and this coding can be
developed formally within RCA0. The set of all (codes of) finite sequences from
X is denoted X<N. The empty sequence is denoted 〈〉. Given any s, t ∈ X<N, |s|
denotes the length of s, s(i) or (s)i denotes the (i+1)-th element of s for i < |s|,
and, for each j ≤ |s|, s [j] is the j-th initial segment of s, i.e. 〈s(0), . . . , s(j−1)〉.
If s = t [j] for some j ≤ |t|, we write s ⊆ t and say that s is an initial segment
of t (or t is an extension of s). The concatenation of s and t, written s ∗ t, is
the sequence 〈s(0), . . . , s(|s| − 1), t(0), . . . , t(|t| − 1)〉. If f ∈ XN, s ∗ f denotes
〈s(0), . . . , s(|s| − 1), f(0), f(1), . . . 〉, and f [j] denotes 〈f(0), . . . , f(j − 1)〉. If s =
f [|s|], we write s ⊂ f and say that s is an initial segment of f (or f is an
extension of s). If s and t are sequences with |s| = |t|, s⊗ t denotes the sequence
of length 2|s| where (s⊗ t)2i = (s)i and (s⊗ t)2i+1 = (t)i if 0 ≤ i < |s|.

Consider formulas A(f) and B(g) with distinguished function variables f, g ∈
NN. A Lipschitz game in the Baire space, denoted GL(A,B), is defined as follows:
Two players, say player I (male) and player II (female), alternately choose an
element x in N to form the resulting plays f = 〈x0, x1, x2, . . . 〉 ∈ NN and g =
〈y0, y1, y2, . . . 〉 ∈ NN:

Player I x0 x1 x2 . . .
Player II y0 y1 y2 . . .

Player II wins just in case A(f) ↔ B(g) holds. Put Seqeven = {s ∈ N<N :
|s| is even} and Seqodd = {s ∈ N<N : |s| is odd}. A strategy for player I in the
game GL(A,B) is a function σI : Seqeven → N and a strategy for player II is
a function σII : Seqodd → N. If players I and II follow strategies σI and σII,
respectively, the resulting plays are uniquely determined. We will write σI⊗I

L σII
to denote player I’s resulting play and write σI ⊗II

L σII to denote player II’s
resulting play. A strategy for a player is a winning strategy if the player wins
the game as long as he/she plays following it, no matter what his/her opponent
plays. A game is determined if either player I or player II has a winning strategy.
The following axiom, denoted DetL(A,B), expresses that the Lipschitz game
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GL(A,B) is determined:

∃σI ∀σII ¬(A(σI⊗I
LσII)↔ B(σI⊗II

LσII)) ∨ ∃σII ∀σI (A(σI⊗ILσII)↔ B(σI⊗II
LσII)),

where σI and σII range over strategies for player I and strategies for player
II, respectively. Let Γ1 and Γ2 be formula classes with distinguished function
variables f, g ∈ NN, respectively. The scheme of (Γ1, Γ2)-Lipschitz determinacy
in the Baire space, denoted (Γ1, Γ2)-DetL, is given by the axioms DetL(A,B),
where A(f) ∈ Γ1 and B(g) ∈ Γ2 (if Γ1 = Γ2, we will simply write Γ1-DetL).
The scheme of ∆0

n-Lipschitz determinacy in the Baire space, denoted ∆0
n-DetL,

is given by

∀f ∈ NN(A(f)↔ C(f)) ∧ ∀g ∈ NN(B(g)↔ D(g)) → DetL(A,B),

where A,B ∈ Σ0
n and C,D ∈ Π0

n. The theories (Γ,∆0
n)-DetL and (∆0

n, Γ )-DetL
are defined similarly.

Remark 1. It is easily verified that (Γ1, Γ2)-DetL and (¬Γ1,¬Γ2)-DetL are equiv-
alent over RCA0, for GL(A,B) and GL(¬A,¬B) are essentially the same game.

As for SLOL, the axiom RedL(A,B) ≡ ∃σII ∀σI (A(σI ⊗I
L σII) ↔ B(σI ⊗II

L σII))
expresses that A is Lipschitz reducible to B (i.e., player II has a winning strategy
in the game GL(A,B)). The scheme of (Γ1, Γ2)-Lipschitz semilinear ordering
principle in the Baire space, denoted (Γ1, Γ2)-SLOL, is given by the axiom scheme
RedL(A,B) ∨ RedL(¬B,A), where A ∈ Γ1 and B ∈ Γ2. The theories ∆0

n-SLOL,
(∆0

n, Γ )-SLOL, . . . are defined similarly.

Lemma 1. It is provable over RCA0 that (Γ1, Γ2)-DetL implies (Γ1, Γ2)-SLOL,
and the same holds for classes (∆0

n, ∆
0
m), (Γ,∆0

m) and (∆0
n, Γ ).

Proof. See Lemma 5.2 of [1]. 2

3 Lipschitz determinacy for clopen sets

First of all we introduce the combinatorial tools we will need to analyse the
determinacy of Lipschitz games in the Baire space. A set T ⊆ X<N is called a
tree over X if T is closed under initial segments, i.e. s ∈ T and t ⊆ s imply t ∈ T .
We call the elements of T the nodes of T . A tree is infinite if, for any n, there
exists s ∈ T with |s| = n, i.e. if the set of nodes of T is infinite. If S ⊆ X<N is a
tree over X and S ⊆ T , then S is called a subtree of T .

Fix any tree T ⊆ X<N. A node s ∈ T is called terminal if ∀a ∈ X (s ∗ 〈a〉 /∈ T ).
A function f ∈ XN is called a path of T if ∀n ∈ N (f [n] ∈ T ). The set of all paths
of T is denoted by [T ]. A tree T ⊆ X<N is well-founded if it has no path, i.e.
[T ] = ∅.

A key fact for the analysis of Lipschitz games is that closed sets in the Baire
space correspond to the sets of paths of trees. This fact can be proved in RCA0

and it is, indeed, an immediate consequence of the normal form theorem for Σ0
1

formulas (Theorem II.2.7 of [10]).
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Proposition 1 ([10], Lemma VI.1.5). The following is provable in RCA0.
Suppose X ⊆ N. Assume ϕ(f) ∈ Π0

1 , with f ∈ XN. Then, there is a tree T ⊆
X<N satisfying that [T ] = {f ∈ XN : ϕ(f)}.

Thus, we identify points in the Baire space with functions f ∈ NN, and we
identify closed sets in the Baire space with Π0

1 formulas containing a second
order free variable f which ranges over NN. Similarly, open sets will correspond
to Σ0

1 formulas and so on. We also identify a closed set with the set of paths of
a tree, [T ], and, by abuse of language, use set theoretic notations to mean the
arithmetic formula expressing the corresponding set. (For instance, an expression
of the form f ∈ [T ]− [S] is to be understood as the Π0

1 ∧Σ0
1 formula expressing

that f is a path of T and is not a path of S.) The following definition is made
in RCA0.

Definition 1. Given X ⊆ N, we say that a tree T ⊆ X<N defines a clopen set
if there is a tree T ′ ⊆ X<N such that ∀f ∈ XN (f /∈ [T ]↔ f ∈ [T ′]).

The goal of this section is to prove the following reversal for ATR0 in terms
of Lipschitz determinacy and semilinear ordering principle for clopen sets. This
result was also obtained in [6] (unpublished).

Theorem 2. The following are equivalent over ACA0:

1. ATR0.
2. ∆0

1-DetL.
3. ∆0

1-SLOL.

The remainder of this section is devoted to providing a proof of this result. Our
analysis of clopen Lipschitz determinacy rests on basic properties of well-founded
trees and ordinal rank functions associated with them. Thus, we shall begin by
providing in the next subsection a survey of some basic facts on countable well
orderings and well-founded trees that are provable in ATR0 and that will be
needed in the proof of Theorem 2.

3.1 Well-founded trees and ranks

As we mentioned earlier, we identify N × N with a subset of N using the pair-
ing function (i, j) = (i + j)2 + i. Thus, a binary relation X on N is identified
with a subset of N × N. Working over RCA0 we cannot assume the existence
(as sets) of the domain or the range of X. To deal with this difficulty, in RCA0

an ordering is defined to be a reflexive relation (of course, satisfying other ad-
ditional properties). In RCA0 we say that the relation X ⊆ N × N is reflexive
if ∀i ∀j ((i, j) ∈ X → ((i, i) ∈ X ∧ (j, j) ∈ X)). If X is reflexive then, by ∆0

0–
comprehension, there exists the set field(X) = {i : (i, i) ∈ X}. We also write
i ≤X j for (i, j) ∈ X, and i <X j for (i, j) ∈ X ∧ (j, i) /∈ X.

Within RCA0, given a reflexive binary relation X, we say that X is well
founded if there is no f : N→ field(X) such that f(n+1) <X f(n) for all n ∈ N.
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We say that X is a countable linear ordering if it is a reflexive, antisymmetric,
transitive, and total relation on its field. We say that X is a countable well
ordering if it is both well founded and a countable linear ordering.

There is an arithmetical formula LO(X) expressing that X is a countable
linear ordering, and it can be easily checked that there exist Π1

1 formulas WF(X)
and WO(X) (with a single free variable X) expressing, respectively, that X is a
well founded (reflexive) relation and X is a countable well ordering.

We shall use Greek letters α, β, γ, . . . to denote countable well orderings.
If α is a well ordering then α + 1 denotes a well ordering obtained from α by
adding an upper bound as follows:

α+ 1 = {(2m, 2n) : (m,n) ∈ α} ∪ {(1, 1)} ∪ {(2m, 1) : m ∈ field(α)}.

Let us now consider a natural comparability notion between countable well
orderings that turns out to be equivalent to Arithmetic Transfinite Recursion.

Definition 2. Let α and β be countable well orderings. We say that α is weakly
less than or equal to β, α ≤w β, if there is an injection f : field(α) → field(β)
such that ∀i, j ∈ field(α) (i ≤α j ↔ f(i) ≤β f(j)) .

We write α <w β if α+ 1 ≤w β.

Theorem 3 ([5], Theorem 4). Over RCA0, ATR0 is equivalent to the compa-
rability principle: ∀α, β (α ≤w β ∨ β ≤w α).

The following definitions are made in RCA0. We follow [5] and section 3 of
[3]. Note that for each tree T , the reverse inclusion ⊇ defines a reflexive binary
relation on T and T is well-founded if and only if ⊇ is a well-founded relation.

Definition 3. Let S, T ⊆ X<N be trees. We shall write S � T if there is a
function f : S → T such that ∀s1, s2 ∈ S (s1 ⊂ s2 → f(s1) ⊂ f(s2)) .

Definition 4. Let T ⊆ X<N be a tree. A rank function for T is a pair (rk, α)
where α is a countable well ordering and rk : T → field(α) satisfies α = rk (〈〉)+1
and rk (t) = sup{rk (s) + 1 : t ⊂ s ∧ |s| = |t|+ 1}, for every t ∈ T .
We say that T is a ranked tree if there exists some rank function for T .

The following basic properties of rank functions can be proved in RCA0. In
particular, from part 2 in the next proposition we see that RCA0 essentially
proves uniqueness of rank functions (see Proposition 3.4 in [3]).

Proposition 2. The following is provable in RCA0. Let T ⊆ X<N be a tree and
let (rk, α) be a rank function for T . Then

1. ∀t1, t2 ∈ T (t1 ⊂ t2 → rk(t2) <α rk(t1)).
2. If (rk′, β) is a rank function for T , then there is an order preserving bijection

h : field(α)→ field(β) such that for all t ∈ T , rk(t) = h(rk′(t)).

It can be easily checked that (in RCA0) every ranked tree is well-founded.
The converse can be derived in ATR0 (this is, essentially, Theorem 7 of [4]):
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Theorem 4. Over RCA0, ATR0 is equivalent to the statement “Every well-founded
tree is ranked.”

Rank functions provide a powerful tool in the study of immersions between
well-founded trees. The following lemma will be a key ingredient in our proof of
Theorem 2.

Lemma 2. The following is provable in ACA0. Let S, T ⊆ N<N be ranked trees
with rank functions (rk1, α) and (rk2, β), resp., such that S � T . Then α ≤w β.

Proof. See Lemma 3.7 in [3].

3.2 Proof of Theorem 2

By Theorem V.8.7 in [10] we know that ∆0
1-Det can be proved in ATR0 (as a

matter of fact, both principles are equivalent over RCA0). As a consequence,
ATR0 is strong enough to prove determinacy of clopen Lipschitz games, for a
Lipschitz game for clopen sets can be effectively reduced to a clopen (general)
infinite game. Thus (1) implies (2) and, by Lemma 1, ∆0

1-DetL implies ∆0
1-SLOL

(that is, (2) implies (3)). Therefore, we only must show how to derive ATR0

from ∆0
1-SLOL (working over ACA0). Let α and β be countable well orderings.

We shall prove that α ≤w β ∨ β ≤w α. By Theorem 3 this suffices to derive
ATR0.

Let S(α) be the tree of decreasing sequences (w.r.t.<α) of elements of field(α)

S(α) = {s ∈ field(α)<N : ∀i, j < |s| (i < j → (s)j <α (s)i)}.

Then RCA0 can prove that S(α) is ranked. Indeed a rank function for S(α) is
rk : S(α)→ α+1, defined by (let us note that according to the formal definition
of α+ 1, 1 ∈ field(α+ 1) corresponds to the “ordinal” α)

rk(s) =

{
1 if s = 〈〉

(s)l if |s| = l + 1

A similar tree T (β) can be defined using β accordingly. Then, as we have
remarked, RCA0 suffices to show that S(α) and T (β) are ranked trees and that
there are rank functions (rk, α+1) and (rk, β+1) for S(α) and T (β) respectively.
Let us define the following trees

S = S(α) ∪ {s : ∃t ∈ S(α)∃t′ ∈ N<N ∃j (t ∗ 〈2j〉 /∈ S(α) ∧ s = t ∗ 〈2j〉 ∗ t′)},

S′ = S(α)∪{s : ∃t ∈ S(α)∃t′ ∈ N<N ∃j (t∗〈2j+1〉 /∈ S(α)∧s = t∗〈2j+1〉∗ t′)}.

Then S and S′ are pruned trees (recall that a tree T is said to be pruned if
every sequence of T lies on a path of T ). In addition, [S] is a clopen set (since
[S′] corresponds to its complement in the Baire space) and S ∩ S′ = S(α). In a
similar way we define

T = T (β) ∪ {s : ∃t ∈ T (β)∃t′ ∈ N<N ∃j (t ∗ 〈2j〉 /∈ T (β) ∧ s = t ∗ 〈2j〉 ∗ t′)},
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T ′ = T (β)∪{s : ∃t ∈ T (β)∃t′ ∈ N<N ∃j (t∗〈2j+1〉 /∈ T (β)∧s = t∗〈2j+1〉∗t′)}.

Once again T and T ′ are pruned trees, [T ] and [T ′] are clopen sets and T (β) =
T ∩ T ′.

By ∆0
1-SLOL we have RedL([S], [T ]) or RedL([T ′], [S]), since [T ′] coincides

with the complement of [T ]. If RedL([S], [T ]) holds then player II has a winning
strategy σII in the Lipschitz game GL([S], [T ]). In such a case, we define by
primitive recursion a function F : N<N → N<N putting F (〈〉) = 〈〉 and

F (s ∗ 〈k〉) = F (s) ∗ 〈σII((s⊗ F (s)) ∗ 〈k〉)〉.

Recall that if s and t are sequences with |s| = |t|, s⊗ t denotes the sequence of
length 2|s| where (s⊗ t)2i = (s)i and (s⊗ t)2i+1 = (t)i if 0 ≤ i < |s|. Obviously,
if s1 ⊂ s2 then F (s1) ⊂ F (s2) and it can be easily checked that

∀s (s ∈ S(α)→ F (s) ∈ T (β)).

Indeed, if s0 ∈ S(α) but F (s0) /∈ T (β) then F (s0) ∈ T − T ′ or F (s0) ∈ T ′ − T .
Assume F (s0) ∈ T − T ′ (the other case is similar). Then there exists s′ ∈ S(α)
such that s0 ⊆ s′ and s′ ∗ 〈1〉 ∈ S′ − S(α). Define a strategy σI for player I as
follows:

σI(s⊗ t) =

{
(s′)i if |s| = i < |s′|

1 otherwise

Then σI ⊗I
L σII ∈ [S′] but σI ⊗II

L σII ∈ [T ]. This is a contradiction since σII is
a winning strategy for player II in GL([S], [T ]). Thus, using F we show that
S(α) � T (β) and, by Lemma 2, α+ 1 ≤w β + 1. It easily follows that α ≤w β.

If RedL([T ′], [S]) holds then there exists a winning strategy for player II in
the Lipschitz game GL([T ′], [S]), and we can prove reasoning as in the previous
case that T (β) � S(α) and, as a consequence, β ≤w α. 2

4 Lipschitz determinacy for closed sets

In this section we shall prove new reversals for ATR0 over the weaker base theory
RCA0. The following definition isolates a notion that will play a key role in our
proofs of determinacy within ATR0.

Definition 5. We say that a tree T ⊆ X<N defines a true closed set if

TrueClosed(T ) ≡ ∃f ∈ XN [f ∈ [T ] ∧ ∀k ∃s (f [k] ⊆ s ∧ s 6∈ T )].

Lemma 3. ACA0 proves that if T ⊆ N<N is a tree then either TrueClosed(T )
holds or T defines a clopen set.

Proof. We work in ACA0. Suppose that TrueClosed(T ) does not hold and define
S = {s ∈ N<N : ∃t (s ⊆ t∧ t /∈ T )}. The set S exists by Σ0

1–comprehension, and
it is clear that S is a tree. It is easy to check that ∀f ∈ NN (f /∈ [T ]↔ f ∈ [S])
and hence T defines a clopen set. 2
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Proposition 3. ATR0 proves Π0
1 -DetL and (∆0

1, Σ
0
1 ∧Π0

1 )-DetL.

Proof. First we show that ATR0 proves Π0
1 -DetL. We work in an arbitrary model

of ATR0. Consider A(f), B(g) ∈ Π0
1 . By Proposition 1 there are trees S, T ⊆ N<N

satisfying that [S] = {f ∈ NN : A(f)} and [T ] = {g ∈ NN : B(g)}. We must
show that the Lipschitz game GL([S], [T ]) is determined.
Case 1: TrueClosed(T ) holds, i.e., there exists g0 ∈ [T ] such that ∀k ∃s (g0[k] ⊆
s ∧ s /∈ T ). In this case, there is a winning strategy for player II, σII, defined as
follows: For all s, t ∈ N<N with |s| = j and |t| = j, put

σII((s⊗ t) ∗ 〈n〉) =


g0(j) if s ∗ 〈n〉 ∈ S

min{k : t ∗ 〈k〉 /∈ T} if s ∗ 〈n〉 /∈ S ∧ ∃k (t ∗ 〈k〉 /∈ T )

g0(j) if s ∗ 〈n〉 /∈ S ∧ ∀k (t ∗ 〈k〉 ∈ T )

(In words, player II plays using the boundary point g0 while player I has played
inside S and if player I leaves S at some round then player II will eventually
leave T too.) The existence of σII is granted by ACA0 and it is straightforward
to check that σII is a winning strategy for player II.
Case 2: Case 1 does not hold but TrueClosed(S) does, i.e., there exists f0 ∈ [S]
such that ∀k ∃s (f0[k] ⊆ s∧s /∈ S). Put T ′ = {t ∈ T : ∃t′ (t ⊆ t′∧ t′ /∈ T )}. Then,
T ′ exists by arithmetical comprehension, and T ′ is a well-founded tree since Case
1 fails. Note that if t0 ∈ T − T ′ then we have ∀t′ (t0 ⊆ t′ → t′ ∈ T ). Thus, a
winning strategy for player I, σI, can be defined as follows: Let σI(〈〉) = f0(0)
and for all s, t ∈ N<N with |s| = |t| = j ≥ 1, put

σI(s⊗ t) =


f0(j) if t /∈ T ∨ t ∈ T ′

min{k : s ∗ 〈k〉 /∈ S} if t ∈ T − T ′ ∧ ∃k (s ∗ 〈k〉 /∈ S)

f0(j) if t ∈ T − T ′ ∧ ∀k (s ∗ 〈k〉 ∈ S)

Again, σI exists by ACA0 and, having in mind that player II must eventually
play outside T ′ since T ′ is well–founded, it is easy to check that σI is a winning
strategy for player I.
Case 3: Both TrueClosed(T ) and TrueClosed(S) fail. By Lemma 3 [T ] and [S]
are clopen sets and hence GL([S], [T ]) is determined by Theorem 2.

We conclude by showing that ATR0 proves (∆0
1, Σ

0
1∧Π0

1 )-DetL. Given A(f) ∈
∆0

1 and B0(g), B1(g) ∈ Π0
1 we show that the Lipschitz game GL(A,B0∧¬B1) is

determined. By Proposition 1 there are trees S, S′, T0, T1 ⊆ N<N satisfying that
[S] = {f ∈ NN : A(f)}, [S′] = {f ∈ NN : ¬A(f)} and [Ti] = {g ∈ NN : Bi(g)},
for i = 0, 1. It is easily seen that S ∩ S′ is a well-founded tree and, without
loss of generality, we can assume that T1 ⊆ T0. We must show that the game
GL([S], [T0]− [T1]) is determined. Again we distinguish several cases:
Case A: TrueClosed(T0) does not hold. Then by Lemma 3, T0 defines a clopen
set and there exists a tree T ′0 such that ∀g ∈ NN(g /∈ [T0] ↔ g ∈ [T ′0]). Then
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the game GL([S], [T0] − [T1]) is equivalent to a game GL(A,C) for a formula
C(g) ∈ Σ0

1 , since

g ∈ [T0]− [T1]↔ g /∈ [T ′0] ∧ g /∈ [T1]↔ ∃k (g[k] /∈ T ′0 ∧ g[k] /∈ T1)

But let us note that, by Remark 1, Σ0
1 -DetL is equivalent to Π0

1 -DetL and so it
follows that GL([S], [T0]− [T1]) is determined.
Case B: TrueClosed(T0) holds and there exists some function g0 ∈ [T0] − [T1]
such that ∀k ∃s (g0[k] ⊆ s ∧ s /∈ T0). In this case, there is a winning strategy
for player II, σII, defined essentially as in Case 1. Bearing in mind that S ∩ S′
is well-founded, player II plays using the boundary point g0 as follows: while
player I has played inside S ∩ S′ player II plays using g0 and if player I leaves
S ∩ S′ at some round then player II will eventually leave T0 if player I plays in
S′ − (S ∩ S′) or will remain inside T0 − T1 if player I plays in S − (S ∩ S′).
Case C: TrueClosed(T0) holds, but Case B fails. That is, every g0 ∈ [T0] such
that ∀k ∃s (g0[k] ⊆ s ∧ s /∈ T0) satisfies g0 ∈ [T1]. Then, by Arithmetical Com-
prehension there exists C = {t : ∀s (t ⊆ s→ s ∈ T0)}, and, for every g ∈ NN,

g ∈ [T0]− [T1]↔ ∃k (g[k] ∈ C ∧ g[k] /∈ T1)

As a consequence, the game GL([S], [T0] − [T1]) is again equivalent to a game
GL(A,D), for a formula D(g) ∈ Σ0

1 and, as noted in Case A, is determined. 2

Theorem 5. The following principles are pairwise equivalent over RCA0:

1. ATR0.
2. Π0

1 -DetL.
3. (∆0

1, Π
0
1 )-DetL.

4. (∆0
1, Σ

0
1 ∧Π0

1 )-SLOL

Proof. Let us observe that, by Proposition 3, (1) implies (2) and (4). On the
other hand, obviously, (2) implies (3) and so we only have to show that both (3)
and (4) imply (1).
(3)⇒(1): By Theorem 2 it is sufficient to show that RCA0+(∆0

1, Π
0
1 )-DetL implies

ACA0. Assume RCA0 +(∆0
1, Π

0
1 )-DetL and consider ϕ(x) ∈ Σ0

1 (we disregard pa-
rameters). We must show that the set {x : ϕ(x)} exists. Write ϕ(x) ≡ ∃y ϕ0(x, y)
with ϕ0 ∈ ∆0

0. Define A(f) to be ∀i ≤ f(0) (f(i) = f(0)− i) and B(g) to be

∀l[l = g(0)→
∀i ≤ l (g(i) = l − i) ∧ ∀i ≤ l (∃y ϕ0(i, y)→ ∃y ≤ g(l+1)ϕ0(i, y))]

That is to say, a play for player I is in A if it is of the form
〈k, (k − 1), (k − 2), . . . , 0〉 ∗ f ′

for some k ∈ N and f ′ ∈ NN. A play for player II is in B if it is of the form
〈l, (l − 1), (l − 2), . . . , 0〉 ∗ 〈m〉 ∗ g′

for some l,m ∈ N and g′ ∈ NN and, in addition, for each i ≤ l, if ϕ(i) holds then
∃y ≤ mϕ0(i, y) holds too. Note that A(f) ∈ ∆0

1 and B(g) ∈ Π0
1 .
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Claim. Player I cannot have a winning strategy in the game GL(A,B).

Proof. Towards a contradiction, assume that σ is a winning strategy for player
I and fix k0 = σ(〈〉). By the strong Σ0

1 bounding scheme (which is available in
RCA0), there exists m0 satisfying that ∀i ≤ k0 (∃y ϕ0(i, y)→ ∃y ≤ m0 ϕ0(i, y)).
Now consider a strategy for player II, τ , defined as follows: Player II mimics
player I’s first k0 + 1 moves and in her (k0 + 2)-th move, player II picks m0.
Clearly, we have (A(σ ⊗I τ)↔ B(σ ⊗II τ)), which contradicts the fact that σ is
a winning strategy for player I. 2

In view of the previous claim, it follows from (∆0
1, Π

0
1 )-DetL that player II

has a winning strategy, say σ0, in GL(A,B). For each k ∈ N, let σkI denote the
strategy for player I according to which player I plays as follows:

〈k + 1, k, (k − 1), (k − 2), . . . , 0〉 ∗ 〈0, 0, 0, . . . 〉
It is clear that A(σkI ⊗I σ0) holds and hence B(σkI ⊗II σ0) holds as well, for σ0 is
a winning strategy for player II. Put g = σkI ⊗II σ0, l = g(0) and m = g(l + 1).
Then, we have ∀i ≤ l (∃y ϕ0(i, y)→ ∃y ≤ mϕ0(i, y)). But observe that k ≤ l (for
otherwise it is easy to construct a strategy for player I that would allow player
I to beat player II’s strategy σ0). As a result, we have ϕ(k)↔ ∃y ≤ mϕ0(k, y).
By ∆0

1-comprehension, there exists S ⊆ Seqeven×N×N such that (S)k = σkI for
each k, where (S)k = {(s, n) ∈ Seqeven×N : (s, n, k) ∈ S}. Then, for each k ∈ N
we have
ϕ(k)↔ ∃l,m (l = ((S)k ⊗II σ0)(0) ∧m = ((S)k ⊗II σ0)(l+1) ∧ ∃y ≤ mϕ0(k, y))

and
ϕ(k)↔ ∀l,m (l = ((S)k ⊗II σ0)(0) ∧m = ((S)k ⊗II σ0)(l+1)→ ∃y ≤ mϕ0(k, y))

Thus, the set {x : ϕ(x)} exists by ∆0
1-comprehension.

(4)⇒(1): By Theorem 2 it suffices to show that RCA0 + (∆0
1, Σ

0
1 ∧ Π0

1 )-SLOL
implies ACA0. To this end, we will adapt the proof of (3)⇒(1). Assume RCA0 +
(∆0

1, Σ
0
1 ∧ Π0

1 )-SLOL and consider ϕ(x) ∈ Σ0
1 . Write ϕ(x) ≡ ∃y ϕ0(x, y) with

ϕ0 ∈ ∆0
0. Define A(f) to be ∀i ≤ f(0) (f(i) = f(0)− i) and B′(g) to be

∃l [g(l) = 1 ∧ ∀l′ < l (g(l′) = 0)] ∧
∀l [g(l) = 1 ∧ ∀l′ < l (g(l′) = 0)→ ∀i ≤ l (∃y ϕ0(i, y)→ ∃y ≤ g(l+1)ϕ0(i, y))]

That is to say, a play for player I is in A if it is of the form
〈k, (k − 1), (k − 2), . . . , 0〉 ∗ f ′

for some k ∈ N and f ′ ∈ NN. A play for player II is in B′ if it is of the form

〈
l−1 times︷ ︸︸ ︷
0, . . . , 0〉 ∗ 〈1〉 ∗ 〈m〉 ∗ g′

for some l,m ∈ N and g′ ∈ NN and, in addition, for each i ≤ l, if ϕ(i) holds then
∃y ≤ mϕ0(i, y) holds too. Note that A(f) ∈ ∆0

1 and B′(g) ∈ Σ0
1 ∧Π0

1 .
Reasoning as in the proof of (3)⇒(1), one can show that player II cannot

have a winning strategy in the game GL(¬B′, A). Hence, by (∆0
1, Σ

0
1 ∧ Π0

1 )-
SLOL player II has a winning strategy in the game GL(A,B′), say σ0. Again
reasoning as in the proof of (3)⇒(1), one can show that {x : ϕ(x)} exists by
∆0

1-comprehension using σ0 as a parameter. 2
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5 Concluding remarks

This paper studies the logical strength of Lipschitz determinacy for the first
levels of the Borel hierarchy in the Baire space in terms of subsystems of second
order arithmetic. Two natural questions for future research arise in this context.
We know from [2] that full Borel Lipschitz determinacy is provable within the
subsystem ATR0 + Π1

1 -induction, while we have shown here that ATR0 suffices
for proving (∆0

1, Σ
0
1 ∧Π0

1 )-DetL. But, (Q1 ) what is the highest level (Γ1, Γ2) for
which (Γ1, Γ2)-DetL remains provable in ATR0? (Q2 ) What is the smallest level
(Γ2, Γ3), if any, for which (Γ2, Γ3)-DetL implies ATR0 + Π1

1 -induction over an
appropriate base theory?

In [12], Wadge also introduced the so-called Wadge games (a variation of
Lipschitz games where player II is allowed to pass) to analyze reducibility via
continuous functions in the Baire space. A natural line for future work would
involve calibrating the logical strength of Wadge determinacy and Wadge SLO
for different levels of the Borel hierarchy in the Baire space. Some progress in
this direction has already been made in [6], and [1] provides an analysis of both
Lipschitz and Wadge determinacy for the initial levels of the Borel hierarchy in
the Cantor space.
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